
eBPF: The
Double-Edged
Sword of Linux
Security and
Malware
An exploration of how eBPF enhances Linux
security while also introducing potential
vulnerabilities for malware exploitation.

About Me
Background

Worked in tech for 25 years, cyber security for 10 and a cyber

security researcher and red teamer for the past 7.

EDUCATION

• Pursuing Masters @ NYU
EXPERIENCE

• Red Teamer & Cyber Security Researcher @
Wells Fargo

• Spoken at a few conferences and delivered
workshops at DefCon

PASSIONS

• Muay Thai
• Camping (Scouting)

Why should I care
about this talk?

http://www.youtube.com/watch?v=LiB2udSo3AA

Full Documentary

https://youtu.be/Wb_vD3XZYOA

What is eBPF?

eBPF originally stood for extended
Berkeley Packet Filter

It is a revolutionary technology that allows

running sand-boxed programs in the Linux

kernel.

Powerful and flexible virtual machine

eBPF provides a safe and efficient way to

execute custom code within the kernel,

enabling complex data processing and

monitoring tasks.

Versatile use cases
eBPF can be used for networking, tracing,

security, and performance profiling, making it a

valuable tool for system administrators and

developers.

eBPF is a powerful and versatile technology that enhances Linux functionality.

"eBPF brings super
powers to Linux."

- Brendan Greggs, Netflix

"eBPF does for the Linux
kernel what JavaScript did

for the web."

- Everyone who talks about eBPF (unattributed)

Legitimate Uses of eBPF

Network Packet Filtering
eBPF can create efficient network filters that

inspect and process packets inline, improving

performance over traditional user-space

solutions.

Application Tracing and Profiling
eBPF enables comprehensive tracing and

profiling of applications, providing deep insights

into their behavior and performance

characteristics.

Kernel-Level Security Policies
eBPF can be used to implement various security

policies at the kernel level, such as system call

filtering, process monitoring, and sandboxing.

eBPF offers powerful capabilities for network filtering, application analysis, and security
enforcement, making it a versatile tool for system administrators and developers.

Real-World eBPF Examples

Cilium Network
Monitoring

Cilium leverages eBPF

for network visibility,

enforcing security

policies, and load

balancing.

Sysdig Falco
Falco uses eBPF to

detect anomalous

activity and threats in

applications and

containers.

bcc Tools
The bcc toolkit provides

various eBPF-based

tools for system-level

monitoring and

troubleshooting.

Project Calico
Provides network

security & policy for

applications in

container, virtual

machine, and bare

metal environments.

Tracee
Tracee uses eBPF for

runtime security and

forensics by tracing

system events and

activities.

Pixie
Pixie leverages eBPF for

instant, seamless, and

live visibility into

Kubernetes

environments.

Other Use Cases

• Detection products (EDR)
Attach malicious eBPF programs to authorized kernel

hooks or system events, enabling privilege escalation

and code execution.

• Debugging and Tracing
Capture low level activity in the kernel for

troubleshooting and capturing precise behavior of

applications with minimal overhead or hooking into the

application. Can be used for reverse engineering of

applications as well.

• Kernel Module replacement
Easier to develop features on eBPF for use cases like

Security, Observability and Networking. Still need kernel

modules for device drivers and file systems.

• Live Kernel Patching
Cloudflare demonstrated a way to life patch a

vulnerability in a kernel using eBPF and Linux Security

Modules.

“The power of eBPF is both a
blessing and a curse; a potent

tool capable of enhancing
system security, yet equally

adept at subverting it.”

Practical Examples and
Live Demonstrations

Offensive and Defensive

Monitoring and Detection

bpftrace -e 'tracepoint:syscalls:sys_enter_openat { printf("%s %s\n", comm, str(args.filename)); }'
Attaching 1 probe...
snmp-pass /proc/cpuinfo
snmp-pass /proc/stat
snmpd /proc/net/dev
snmpd /proc/net/if_inet6
^C

Detection (cont)

Credit: https://github.com/aquasecurity/tracee/

Offensive Use Cases

• Root Kit
Load a malicious kernel module containing eBPF

bytecode to hijack system calls or install rootkits.

• Abusing eBPF Attach Points
Attach malicious eBPF programs intercept or

manipulate network traffic, system logging, hide

malware from other processes. Capture user input such

as keylogging.

• Exploiting Kernel Vulnerabilities
Leverage kernel vulnerabilities or memory corruption

bugs to inject eBPF code into the kernel space and gain

elevated privileges.

• Userspace eBPF Program Injection
Inject eBPF programs into userspace processes or

containers, potentially bypassing security controls or

monitoring mechanisms.

• Persistence Mechanisms
Establish persistence by modifying system startup

scripts, kernel modules, or other mechanisms to ensure

malicious eBPF code is loaded during system boot.

https://docs.google.com/file/d/16GwRVAnseLgq6ZS2m8-9C7Ka3pFHZAbb/preview

Finding eBPF programs

Introducing eBPF

Explain what eBPF

(extended Berkeley

Packet Filter) is and

how it allows

attaching custom

programs to

various kernel

hooks.

Kernel Level
Access

Highlight how

eBPF programs

can interact with

the Linux kernel at

a deep level,

enabling the

creation of

powerful rootkits.

Stealthy
Execution

Describe how eBPF

rootkits can

execute malicious

code stealthily,

evading traditional

detection methods.

Kernel
Hooking

Explain how eBPF

rootkits can hook

into kernel

functions and

intercept system

calls, allowing

them to hide

processes, files, and

network

connections.

Persistence
Mechanisms

Discuss techniques

used by eBPF

rootkits to persist

across reboots and

maintain their

presence on the

compromised

system.

Detection and
Mitigation

Outline the

challenges in

detecting and

removing eBPF

rootkits, and

present potential

mitigation

strategies.

https://docs.google.com/file/d/1jC0FaUdfUV5ibRIStFgUwv_gx7doF8vF/preview

Advanced Detection Mechanisms

Monitoring eBPF programs

Due to the powerful nature of

eBPF, it's crucial to monitor the

eBPF programs loaded into the

kernel for potential security

threats.

Detecting malicious eBPF
code

Advanced detection mechanisms

should be in place to identify and

mitigate any malicious eBPF code

that could compromise system

security.

Real-time analysis
Real-time analysis of eBPF

programs is essential to quickly

detect and respond to potential

threats as they emerge.

Disabling eBPF
functionality

Disable or restrict where eBPF

programs can be run.

Unprivileged users should be

disabled from using eBPF

programs.

Advanced detection mechanisms are crucial for ensuring the secure and responsible use of eBPF,
enabling organizations to harness its power while mitigating potential risks.

Bvp47

Bvp47 is a highly sophisticated backdoor malware attributed to

the Equation Group (likely NSA). This backdoor was discovered

by Pangu Lab during a forensic investigation in 2013 and

submitted to VirusTotal. Remained undetected for nearly a

decade. (>287 Targets, 45 Nations)

More Examples
PoC Rootkits

Boopkit
Developed to work similarly to Bvp47

https://github.com/krisnova/boopkit

TripleCross
An amazing undergraduate thesis project.

https://github.com/h3xduck/TripleCross

https://github.com/krisnova/boopkit
https://github.com/h3xduck/TripleCross

eBPF for Windows

Programmability, extensibility, and agility of eBPF

IOVisor uBPF Project and PREVAIL verifier

Introspection, Tracing,
Telemetry

Extend User and Kernel Mode services and daemons

Conclusion

eBPF's versatility as a security tool
eBPF can be leveraged to implement powerful

security monitoring and prevention mechanisms.

Potential for abuse by malware
authors

The same capabilities that make eBPF

useful for security can be exploited by

malware for persistence and stealth.

Ongoing evolution and research
The eBPF ecosystem continues to evolve, with

new use cases and potential risks being

discovered.

Understanding eBPF's dual nature as a security tool and potential malware vector is crucial for
staying ahead of emerging threats and leveraging its capabilities responsibly.

https://digital-shokunin.net/page/ebpf-resources/
or

https://shorturl.at/Fu5Bq

Thank You

eBPF Resources

https://digital-shokunin.net/page/ebpf-resources/
https://shorturl.at/Fu5Bq

