& cBPF: The

€ Double-Edged
® Sword of Linux
£\ | Security and
Y Malware

An exploration of how eBPF enhances Linux

security while also introducing potential
vulnerabilities for malware exploitation.

About Me

Background

Worked in tech for 25 years, cyber security for 10 and a cyber
security researcher and red teamer for the past 7.

EDUCATION

Pursuing Masters @ NYU

EXPERIENCE

Red Teamer & Cyber Security Researcher @

Wells Fargo
Spoken at a few conferences and delivered

workshops at DefCon

PASSIONS
Muay Thai
- Camping (Scouting)

Why should | care
about this talk?

aeapl:

| DOCUMENTA

eBPF' UNLOCKING
THE KERNEL

~ SPEAKEASY

http://www.youtube.com/watch?v=LiB2udSo3AA

Full Documentary

https://youtu.be/Wb_vD3XZYOA

eBPF originally stood for extended
Berkeley Packet Filter

It is a revolutionary technology that allows

running sand-boxed programs in the Linux

kernel.

What is eBPF?

Powerful and flexible virtual machine
eBPF provides a safe and efficient way to

execute custom code within the kernel,
enabling complex data processing and

monitoring tasks.

Versatile use cases

eBPF can be used for networking, tracing,
security, and performance profiling, making it a
valuable tool for system administrators and

developers.

66

"eBPF brings super
powers to Linux."

- Brendan Greggs, Netflix

%Jum-}'f

&

Brages®

"eBPF does for the Linux
kernel what JavaScript did
for the web."

- Everyone who talks about eBPF (unattributed)

Use
Cases

User
Space

Kernel

Networking

N eBPF

Projects

Kernel Runtime

Security Observability &

Tracing

k¢ 8

>

B e s ar e o o o i B -
e 3 - ' -
H ’l: bl [I CAl | s | l //\ t B;.

Verifier & JIT OS
Runtime
Maps
Kernel Helper API Q -

- Tracing

ﬁeBPF - Profiling

- Monitoring

Applicafic;n

- Observability

- Security Controls

- Networking
ge,sPF - Network Security

- Load Balancing

- Behavioral Security

Legitimate Uses of eBPF

A .
QiQ A

Network Packet Filtering Application Tracing and Profiling Kernel-Level Security Policies
eBPF can create efficient network filters that eBPF enables comprehensive tracing and eBPF can be used to implement various security
inspect and process packets inline, improving profiling of applications, providing deep insights policies at the kernel level, such as system call
performance over traditional user-space into their behavior and performance filtering, process monitoring, and sandboxing.

solutions. characteristics.

Real-World eBPF Examples

-

Cilium Network Sysdig Falco bcc Tools Project Calico Tracee Pixie
Monitoring Falco uses eBPF to The bcc toolkit provides Provides network Tracee uses eBPF for Pixie leverages eBPF for
Cilium leverages eBPF detect anomalous various eBPF-based security & policy for runtime security and instant, seamless, and
for network visibility, activity and threatsin tools for system-level applications in forensics by tracing live visibility into
enforcing security applications and monitoring and container, virtual system events and Kubernetes
policies, and load containers. troubleshooting. machine, and bare activities. environments.

balancing. metal environments.

Other Use Cases

. Detection products (EDR) - Kernel Module replacement
Attach malicious eBPF programs to authorized kernel Easier to develop features on eBPF for use cases like
hooks or system events, enabling privilege escalation Security, Observability and Networking. Still need kernel
and code execution. modules for device drivers and file systems.

. Debugg|ng and Tracing - Live Kernel Patchlng
Capture low level activity in the kernel for Cloudflare demonstrated a way to life patch a
troubleshooting and capturing precise behavior of vulnerability in a kernel using eBPF and Linux Security
applications with minimal overhead or hooking into the Modules.

application. Can be used for reverse engineering of

applications as well.

“The power of eBPF Is both a
blessing and a curse; a potent
tool capable of enhancing
system security, yet equally
adept at subverting It.”

Practical Examples and
Live Demonstrations

Offensive and Defensive

Monitoring and Detection

bpftrace -e 'tracepoint:syscalls:sys enter_openat { printf("%s %s\n", comm, str(args.filename)); }'
Attaching 1 probe...

snmp-pass /proc/cpuinfo

snmp-pass /proc/stat
snmpd /proc/net/dev
snmpd /proc/net/if inet6
~C

Detection (cont

func (sig *K8SServiceAccountToken) GetMetadata() (detect.SignatureMetadata, error) {
return detect.SignatureMetadata{

ID: "TRC-108",

Version: Ly [

Name: "K8s service account token file read",

EventName: "k8s_service_account_token",

Description: "The Kubernetes service account token file was read on your container. This -

Properties: mapl[stringlinterface{}{
“Severity": 0,
""Category": "credential-access",
"Technique": "Exploitation for Credential Access",
"Kubernetes_Technique": "Container service account",
Nidy: "attack-pattern--9c306d8d-cde7-4b4c-b6e8-d0bbl6caca36",
"external_id": Y1212

func (sig *K8SServiceAccountToken) GetSelectedEvents() ([ldetect.SignatureEventSelector, error) {
return []detect.SignatureEventSelector{

{Source: "tracee", Name: "security_file_open", Origin: "container"},
}, nil

func (sig *K8SServiceAccountToken) OnEvent(event protocol.Event) error {
eventObj, ok := event.Payload. (trace.Event)
if lok {
return fmt.Errorf("invalid event")

Credit: https://github.com/aquasecurity/tracee/

Offensive Use Cases

. Root Kit - Userspace eBPF Program Injection

Load a malicious kernel module containing eBPF Inject eBPF programs into userspace processes or

bytecode to hijack system calls or install rootkits. containers, potentially bypassing security controls or

monitoring mechanisms.

- Abusing eBPF Attach Points . _
. | - Persistence Mechanisms
Attach malicious eBPF programs intercept or

malware from other processes. Capture user input such

scripts, kernel modules, or other mechanisms to ensure
as keylogging.

malicious eBPF code is loaded during system boot.

- Exploiting Kernel Vulnerabilities

Leverage kernel vulnerabilities or memory corruption

bugs to inject eBPF code into the kernel space and gain
elevated privileges.

3:tmux X

fbpfhacks#

https://docs.google.com/file/d/16GwRVAnseLgq6ZS2m8-9C7Ka3pFHZAbb/preview

Finding eBPF programs

Introducing eBPF

Kernel Level
Access

Stealthy
Execution

)

Kernel
Hooking

Persistence
Mechanisms

Explain what eBPF
(extended Berkeley
Packet Filter) is and
how it allows
attaching custom
programs to
various kernel

hooks.

Highlight how
eBPF programs
can interact with
the Linux kernel at
a deep level,
enabling the
creation of

powerful rootkits.

Describe how eBPF
rootkits can
execute malicious
code stealthily,
evading traditional

detection methods.

Explain how eBPF
rootkits can hook
into kernel
functions and
intercept system
calls, allowing
them to hide
processes, files, and
network

connections.

Discuss techniques
used by eBPF
rootkits to persist
across reboots and
maintain their
presence on the
compromised

system.

Detection and

Mitigation

Outline the
challenges in
detecting and
removing eBPF
rootkits, and
present potential
mitigation

strategies.

https://docs.google.com/file/d/1jC0FaUdfUV5ibRIStFgUwv_gx7doF8vF/preview

Advanced Detection Mechanisms

@ O @

Monitoring eBPF programs Detecting malicious eBPF Real-time analysis Disabling eBPF
code Real-time analysis of eBPF functionality
Due to the powerful nature of Advanced detection mechanisms programs is essential to quickly Disable or restrict where eBPF
eBPF, it's crucial to monitor the should be in place to identify and detect and respond to potential programs can be run.
eBPF programs loaded into the mitigate any malicious eBPF code threats as they emerge. Unprivileged users should be
kernel for potential security that could compromise system disabled from using eBPF
threats. security. programs.

Advanced detection mechanisms are crucial for ensuring the secure and responsible use of eBPF,

enabling organizations to harness its power while mitigating potential risks.

%’LEASE

USE FRONT |4

DOOR

Bvp47

Bvp47 is a highly sophisticated backdoor malware attributed to
the Equation Group (likely NSA). This backdoor was discovered
by Pangu Lab during a forensic investigation in 2013 and
submitted to VirusTotal. Remained undetected for nearly a
decade. (>287 Targets, 45 Nations)

BVP‘\‘ i

SYN Knock
(por‘t 135%)

SYN Response
(port 246%)

Linux re&e_c‘ts/ignores SYN
packet because port not open
or contains non TCP spec
felds, treats as bad packet,
no‘th?mj is lot-ﬁe_o(

eBPF program

Monitors:

SYN packets to port
1357

Reaolsz

Non-TCP spec data
feld i sSYN packet

&
=]

-

Deerypt data

Execute Instruction

Send Response

4 Frame 1: 190 bytres on wire (1520 bits), 190 bytres captured (1520 bits) on interface 0

@ ethernet II, Src: Vmware_d9:13:fd (00:0c:29:d9:13:fd), pst: vmware_23:bb:3d (00:0c:29:23:bb:3d)

3 Internet Protocol version 4, Src: 192.168.91.131 (192.168.91.131), Dst: 192.168.91.128 (192.168.91.128)
3 Transmission Control Protocol, Src Port: 22280 (22280), Dst Port: 1357 (1357), Seq: 1, Ack: 1, Len: 136
- pata (136 bytes)

Data: 6cf88e9066ed6edf1d6dlc393f97d749c8cI8b72c700aclb. ..
[Length: 136]

More Examples

PoC Rootkits

OO

Boopkit TripleCross
Developed to work similarly to Bvp47 An amazing undergraduate thesis project.

https://aithub.com/krisnova/boopkit https://aithub.com/h3xduck/TripleCross

https://github.com/krisnova/boopkit
https://github.com/h3xduck/TripleCross

eBPF for Windows

Programmability, extensibility, and agility of eBPF

IOVisor uBPF Project and PREVAIL verifier

Introspection, Tracing,
Telemetry

Extend User and Kernel Mode services and daemons

eBPF's versatility as a security tool

eBPF can be leveraged to implement powerful

security monitoring and prevention mechanismes.

Conclusion

Potential for abuse by malware

authors
The same capabilities that make eBPF

useful for security can be exploited by

malware for persistence and stealth.

O

Ongoing evolution and research

The eBPF ecosystem continues to evolve, with
new use cases and potential risks being

discovered.

Thank You

eBPF Resources

https://digital-shokunin.net/page/ebpf-resources/
or
https://shorturl.at/FuSBq

Resources

https://digital-shokunin.net/page/ebpf-resources/
https://shorturl.at/Fu5Bq

